#smartgrids

Routable GOOSE support

As a continuous process of extending the functionality of 61850 products family, JPEmbedded implemented support for routable GOOSE (R-GOOSE) feature. The advantage of R-GOOSE is that it allows to deliver data beyond local (LAN) networks. It facilitates implementation of centralized systems overlooking operation of the infrastructure on wide geographical areas.

RGOOSE

As a transport protocol R-GOOSE is using multicast UDP/IP. Since GOOSE messages might be sent over public IP networks, there is a need to provide adequate cyber security means for both authentication of data source and encryption of data content.

R-GOOSE implementation by JPEmbedded supports GDOI protocol (described by RFC 6407) used for key negotiation between IDE and Key Distribution Center (KDC) and most popular encryption algorithms like AES-CBC or 3DES-CBC.

From developer perspective there is no difference between enabling GOOSE or R-GOOSE in given IED application, so migration of existing applications using GOOSE to R-GOOSE is smooth and easy. In most cases enabling R-GOOSE for IED will mean generation of certificates required for key negotiation and update of  CID file which defines a multicast group to which R-GOOSE messages shall be delivered.

R-Goose communication between Intelligent Electronic Devices (IEDs) in distribution automation systems (DAS) is defined in IEC 61850-8-1 and cybersecurity issues related to multicast groups are specified by IEC 62351-9.

If you would like to know more about our R-GOOSE implementation please contact us at sales@jpembedded.eu.

 

 

 

read more
Electricity Exchange selects ICCP/TASE.2 library by JPEmbedded to secure data exchange with EirGrid.

Electricity Exchange is an Irish Utility which has taken a high-tech approach to harness the capacity of unused back-up generators found in hospitals and factories around the country. Its so-called Virtual Power Plant provides reserve power to the national grid. The company has secured back-up generators and designed the state-of-the-art smart grid automation solution. Thus, in the event of a sudden power scarcity that cannot be handled by regular power stations, Electricity Exchange is able to provide the capacity to the national grid to supply up to 150 000 houses.

Electricity Exchange selected secure-ICCP/TASE.2 library by JPEmbedded as a basis of the company’s communications with Ireland’s Transmission System Operator, EirGrid. Inter-Control Center Communications Protocol (ICCP) also known as TASE.2 is one of the standards that defines communication between control centers, utilities and power pools. The standard supports the exchange of real-time data using secured channel.

JPEmbedded’s libraries and some other solutions available on the market were extensively tested before taking a decision favorable to the Poland based supplier.

Reliable communication between our system and EirGrid is crucial for our business. The solution provided by JPEmbedded’s matches all our needs, including data transfer safety, portability, and last but not least, ease of integration with EirGrid’s systems. – says Dr. Paddy Finn, CEO of Electricity Exchange.

JPEmbedded’s Secure-ICCP/TASE.2 library provides a secure connection to the EirGrid, TSO for the provision of real-time power generation data, in addition, to control states and set points that manage the operation of Electricity Exchange’s power generation assets. – adds Dr. Finn.

Electricity Exchange is a smart grid operator and a leading provider of Demand Response Technologies and Services in Ireland. Electricity Exchange developed technology that enables commercial and industrial electricity consumers to generate revenue by supporting the national power grid. The Company operates a Virtual Power Station that pays businesses for making themselves available to support Ireland’s electricity grid when required. Electricity Exchange was founded by Dr Paddy Finn, a finalist in the EY Entrepreneur of the Year 2018 competition, with his business partner Duncan O’Toole. The company is backed by Bord Na Móna, an Irish semi-state company.

JPEmbedded is a tech company offering state of the art products for secure and reliable communication in smart grids. Software solutions include off-the-shelf communication software libraries IEC 61850, IEC 60870-5-10X, and ICCP/TASE.2. The company offers also hardware protocol converters that enable interoperability and allows customers, device manufacturers to connect their devices to the grid effortlessly.

read more
Integrating IoT with IEC 61850

Internet of Things continues to be one of the key technology trends in the recent years. According to Gartner’s estimations, IoT network will grow from 8,7 billion in 2017 to over 20 billion connected things by 2020. Utilities representing the energy market understand the advantages offered by Internet of Things, and look towards integrating it with its Intelligent Electronic Devices (IEDs) deployed in substations and distribution networks. Well-thought integration of the IoT with existing smart-grids will extend benefits beyond distribution, automation and monitoring, making energy use more efficient and saving billions of Euros…

In this blog entry, I will showcase how to integrate IEC 61850 (an international standard for smart grids and substation automation) with an MQTT based IoT network. The idea and demo setup of the system have been presented by JPEmbedded at the IEC 61850 Global Conference in Berlin in October 2018.

JPEmbedded’s IoT to IEC 61850 demo setup consists of several NanoPi modules, acting as IoT devices installed on Distributed Energy Resources (e.g. on microturbines or, on photovoltaics). Each IoT device publishes some data which is sent to an MQTT broker running on a RaspberryPi device.

The MQTT broker is responsible for receiving all messages broadcasted by the IoT network, filtering them, determining who is subscribed to each message, and sending the message to these subscribed clients. Another responsibility of the broker is the authentication and authorization of clients. The broker can handle a large number of concurrently connected MQTT clients.

In our system, a JPEmbedded’s IEC 61850 gateway is configured as an MQTT client and subscribed to receive relevant data from the MQTT broker. The values received from the broker are mapped to the IEC 61850 data model. The control block configured on the gateway generates GOOSE frames each time any value is updated by the IoT network. According to our measurement, the delay between reception of an MQTT message and generation of a goose message by the gateway is lower than 0,8 milisecons.

Updates on the parameter in the data model are sent to the IEC 61850 client installed on a PC.

Communication between DER (including dispersed generation devices and dispersed storage devices) and IEC 61850 is already defined in IEC 61850-7-420:2009. It utilizes existing IEC logical nodes defined in part 4 of the standard where possible, but also defines DER-specific logical nodes where needed.

As far as the hardware is concerned, NanoPi and RaspberryPi are only two examples of the various platforms that can be used as a base for IoT devices. Similar systems can be made on any other, commercially available IoT device by integrating it with JPEmbedded’s IEC 61850 gateway. Finally, JPEmbedded’s gateway can be customized and convert not only MQTT, but also other data protocols  like CoAP, Websocket, Node or XMPP.

If you would like to know more about our demo system or the IEC 61850 gateway itself, please contact us at sales@jpembedded.eu.

 

read more
6 reasons to attend the IEC 61850 Europe Conference

The IEC 61850 Europe is the place to connect with more IEC 61850 experts and the implementation leaders than you’ll find at any other smart grid conference in the world. The event is organized by Phoenix Forums and takes place annually in varying cities all across Europe. The last being in Amsterdam was held in September 2017. We took part in the 3-day event presenting our communication libraries IEC 61850, ICCP TASE.2 and IEC 60870-5-104. A few weeks of work on the preparation of the demonstration set-up, marketing materials and the presentation slideshow. Two sleepless nights, and stress, whether our parcels and equipment would ever arrive in one piece. Happily, all our electronic stuff arrived in Amsterdam safe and sound.

How was the conference itself? It was just perfect! Three days of interesting presentations, case studies (e.g. ‘IEC 61850 engineering process in offshore wind farms’ by Saeed Nemati Yarafi). Hot discussions regarding security standards (e.g. ‘Cyber security for digital substation’ by Cedric Harispuru). Meeting loads of interesting people, establishing both personal and business contacts… Let them flourish over the coming months! If you are working with IEC 61850 standard, this conference is definitely a must for you.

However, if you still have any doubts, I’m listing below the 6 reasons to attend IEC 61850 Europe Conference.

1. Educational opportunities

No matter how experienced you are with IEC61850, there’s always something new you can learn. The educational aspect of a first day’s workshop is indisputable. Fundamentals of IEC 61850 workshop (in 2017 it was carried out by Mr. Christoph Brunner, Convenor of IEC TC57 WG10) providing a comprehensive and in-depth insight into the building blocks, key applications, and optimal operations of the standard within the substation environment.

2. Forge of inspirational ideas.

It doesn’t matter if you run a company or manage a single smart grid project only. Participating in such a conference will awaken the creativity within you so as new ideas will appear themselves. IEC 61850 experts continuously exploring on how to apply the standard on the new fields for example by using IEC 61850 in the controling of street lights. Don’t miss the opportunity to be one of the first to hear and implement new ideas and trends that can impact smart grid future!

3. Follow the changes in the IEC 61850 standard.

The current 2nd version of the standard was published in 2012. The IEC 61850 Europe Conference presents and discusses the planned changes to the standard (which are likely to be included in versions 2.1 and 3 of the standard). You can also talk about changes with the members of the Power systems management and information exchange group, the majority of which can be found during this event.

4. Networking – meet other IEC 61850 experts.

Conference provides a great opportunity to network. Breaking between the presentations and the network reception gives you the opportunity to make new contacts with like-minded colleagues from across the global IEC 61850 ecosystem (i.e. utilities, device manufacturers, certification bodies).

5. Meet vendors and suppliers.

Additionally to the conference, around 20 exhibitors present their products and services. Surrounded by the companies like DNL, TUV Sud, FMTP, Relyum, SAE IT-systems, JPEmbedded presented its IEC 61850 and ICCP/TASE.2 communication stacks for the energy market. For the solution suppliers (such as ourselves), one-to-one private demonstration is also a great opportunity to understand customer’s needs and discuss how to deliver a customized IEC 61850 software solution which fits to the specific use case.

6. Solving the real IEC 61850 implementation and maintenance problems.

People bring real-life situations that are covered during roundtable discussions. You can ask experts to brainstorm and solve your problem (even if the answer always start with “IT depends…” :)) or you can just help the others face their own challenges. There is no doubt that in both cases at the end of the Conference you will be more experienced than on the first day!

 

read more